2

2

2

Mark schemes

Q1.

(a) 1. Restriction endonucleases/enzymes cuts plasmid;

OR

Restriction endonucleases/enzymes produces 'sticky ends'; Ignore restriction enzymes cuts out the gene. Reject restriction enzymes **cuts** the **gene**.

2. Ligase joins gene/DNA and plasmid

OR

Ligase joins 'sticky ends';

- (b) 1. Cell division has occurred (before gene added); Accept mitosis but reject meiosis.
 - 2. (Cells producing) gametes do not receive the gene; Accept DNA replication has occurred.
- (c) 1. No overlap in <u>SD</u>s;
 - 2. Significant increase/difference (in growth/mass)

OR

Increase/difference (in growth/mass) is **not** due to chance; *Reject 'the results are significant or not due to chance'.*

- (d) 1. Large sample size **so** representative;
 - 2. 12 months **so** can assess/allow growth; Accept long time for 12 months. Accept increase in mass for growth.
 - 3. Control (present) for comparison; Accept description of the control.

2 max

[8]

Q2.

(d) Binds to P34 gene/DNA/mRNA OR

	Binds to transcription factor gene/DNA OR Binds to promoter;				
		Reject binds to transcription factor	1		
(e)	1.	Restriction (endonuclease/enzyme) to cut plasmid/vector;			
	2.	Ligase joins gene/DNA to plasmid/vector;	2		
(f)	1.	Mass/number of amino acids/polypeptides; Accept weight for mass Ignore density/size Accept length of polypeptide/amino acid chain Accept primary structure /sequence of amino acids. Accept tertiary structure			
	2.	Charge;			
	3.	R groups (differ);	2 max		
Q3.	Pro	duces (c)DNA using (m)RNA [.]			
()		Accept: 'converts' (m)RNA to (c)DNA. Reject: tRNA	1		
(b)	Join	ns <u>nucleotides</u> to produce (complementary strand/s of) <u>DNA;</u> Accept: 'joins <u>DNA nucleotides</u> '.	1		
(c)	1. 2.	 To remove any DNA present; As this DNA would be amplified / replicated; 1. Must be idea of removal / destruction. 2. Accept: idea of DNA not being used as template. 	2		
(d)	1. 2.	Ratio in range of 1.4 :1 to 1.5 :1 = 2 marks; One mark for answers which shows incorrect ratio but Shows 0.24 as a number or line on the graph OR Ratio in correct range, but the wrong way round OR Ratio in correct range but not expressed to 1 OR Ratio shown the other way round in range 1: 0.67 to 1:0.71; <i>Note: ratio not expressed to 1 in correct range may</i>			

3:2 or simply as 1.5 for one mark. 2 (e) Limited number of primers / nucleotides; Accept: DNA polymerase (eventually) denatures Accept: primers / nucleotides 'used up'. 1 (f) 1. Base sequences differ; 2. (Different) complementary primers required; 1. Accept: reference to either RNA or DNA base sequences but reject reference to DNA base sequence in viruses. 2 [9] Q4. (a) 1. Human DNA / human gene / HGH gene contains introns OR Methods 2 and 3 produce DNA / HGH without introns; 2. E. coli cannot remove introns / cannot splice mRNA / cannot splice pre-mRNA; 2 (b) Faster to use gene machine than all the enzyme-catalysed reactions (involving reverse transcriptase); Accept extra step / more steps involved in isolating mRNA 1 (c) 1. Cut the plasmid with a restriction endonuclease; Allow 'add base sequences to blunt ends of plasmid and HGH gene' 2. (So that) both have complementary / sticky ends; 3. (Mix together) and add ligase to join the complementary / sticky ends; 3 Can quickly identify transformed bacteria using UV light; (d) 1 (e) 1. Arabinose alters structure of araC protein / reduces effect of araC protein; 2. So stops / reduces inhibition of promoter gene and GFP gene is transcribed; OR So stops / reduces inhibition of promoter gene and GFP is produced; 2 [9]

Q5.				
(a)	1. 2.	(If injected into egg), gene gets into all / most of cells of silkworm; So gets into cells that make silk.	2	
(b)	1. 2.	Not all eggs will successfully take up the plasmid; Silkworms that have taken up gene will glow.	2	
(c)	Pron	noter (region / gene).	1	
(d)	1. 2.	So that protein can be harvested; Fibres in other cells might cause harm.	2	[7]

Q6.

2.

(a)	1.	(Requires DNA fragment) DNA polymerase, (DNA) nucleotides and primers;
	2.	Heat to 95 °C to break hydrogen bonds (and separate strands); Accept temperature in range 90 to 95 °C.
	3.	Reduce temperature so primers bind to DNA/strands; Accept temperature in range 40 to 65 °C.
	4.	Increase temperature, DNA polymerase joins nucleotides (and repeat method);
		Accept Taq polymerase for DNA polymerase.
		Accept temperature in range 70 to 75 °C. 4
(b)	1.	(Initially) number (of molecules) doubling is low
		OR
		Doubles each cycle to produce exponential increase;

First alternative relates to idea of low numbers i.e., 2, 4, 8, 16, 32 etc. Plateaus as no more nucleotides/primers;

Accept 'levels out' or 'flattens' for plateaus. Accept enzyme/polymerase (eventually) denatures.

2

[6]